
Communications to the Editor

Skeletal Substitution as a Route to New Inorganic
Heterocycles: The Unexpected Replacement of
Boron in a Borazine-like Environment

Derek P. Gates,† Louise M. Liable-Sands,‡
Glenn P. A. Yap,‡ Arnold L. Rheingold,‡ and Ian Manners*,†

Department of Chemistry
UniVersity of Toronto, 80 St. George Street

Toronto, Ontario M5S 3H6, Canada
Department of Chemistry and Biochemistry

UniVersity of Delaware, Newark, Delaware 19716

ReceiVed September 24, 1996

Inorganic rings are of considerable interest due to their
intriguing molecular and solid-state structures, bonding, and
function as precursors to polymers via ring opening polymer-
ization and to ceramics via pyrolysis.1-3 Borazines and
phosphazenes are among the most well-studied classes of
inorganic heterocycles, and both have been found to possess
robust ring skeletons. For example, halogenated derivatives
permit facile and efficient side-group substitution reactions.4,5

We recently reported6 the synthesis of the first example of a
well-characterized borazine-phosphazene hybrid,2, via halide
abstraction with GaCl3 from the boratophosphazene1.7,8 In our
recent studies of the reactivity of the cation we have found that
2 reacts with tertiary amines such as NEt3 to reform borato-
phosphazene1 together with Et3N‚GaCl3, rather than the
expected adduct at boron.9 This observed reactivity pattern
prompted us to explore the possibility of preparing analogues
of 2 with alternative, less reactive fluorinated counterions. In

this paper we report the unexpected reactions of1with the silver
salts Ag[AsF6] and Ag[SbF6].
When a solution of1was added to Ag[AsF6] in CH2Cl2, the

immediate formation of a fine white precipitate of AgCl was
observed. After 12 h a pressure buildup was detected. The
solution was then decanted, and the solvent removed to yield a
white crystalline solid. The product was analyzed by31P NMR
in CDCl3, which showed the presence of a dominant singlet at
30.6 ppm.10 This resonance was not consistent with the
formation of the analogue of2 with AsF6- as counterion [for
2, δ(31P, CDCl3) ) 35.0 ppm]. Remarkably, no nonvolatile
boron-containing species were detected by11B NMR. Colorless
crystals were obtained by slow evaporation of solvent from a
solution of the product in dichloromethane/hexanes (1:1). A
crystal was analyzed by X-ray diffraction, which surprisingly
showed the product of the reaction to be the arsenic(V)
heterophosphazene3.11-13

Compound3 (Figure 1) adopts a boat conformation with As
and N(1) removed substantially from the plane of the other four
ring atoms. Unlike 1 where one B-Cl bond is highly
elongated,6 all As-F bonds in3 are equal (1.724(2)-1.735(3)
Å) and longer than the As(V)-F bonds in AsF6- (1.68 Å).14

The P-N bonds flanking N(1) are shorter (av 1.558(6) Å), than
those involving the methyl-substituted nitrogen atoms N(2) and
N(3) (av 1.592(5) Å), reflecting a greater degree ofπ bonding
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in the former bonds. The As-N bond lengths (av 1.905(6) Å)
are similar to the longest bonds found in the cyclodiars(V)-
azane [(CF3)2ClAsNSiMe3]2 [As-N ) 1.933(7) Å],15 and are
longer than the As-Nmultiple bonds in the arsazene [NAsPh2]3
(av 1.758(4) Å).16

Skeletal substitution reactions of an atom in an inorganic ring
are extremely rare, and to the best of our knowledge, are
unprecedented for boron-containing rings.17,18 Moreover, we
assume that the cation of2 is formed initially in the reaction
mixture containing1 and Ag[AsF6] and the subsequent skeletal
replacement of boron in a borazine-like environment would be
highly unexpected. It is also noteworthy that AsF6

- is often
used as a “noncoordinating” anion to isolate very reactive
cations. Remarkably this anion appears to react readily with
the borazine-phosphazene cation in2. We believe that the
thermodynamic driving force for the observed reaction is the
formation of B-F bonds from As-F bonds (B-F, 613( 53
kJ/mol; As-F, ca. 406 kJ/mol)19 and the subsequent elimination
of volatile BFxCl3-x.
To explore the generality of this new synthetic procedure,

we have also studied the reaction of1 with Ag[SbF6]. Again,

an immediate white precipitate of AgCl formed, and a pressure
buildup was detected. After workup, a crystalline solid (4) was
obtained, and analysis by31P NMR in CDCl3 revealed two
dominant resonances at 28.9 and 27.5 ppm. This is consistent
with skeletal replacement of boron but suggests that more than
one product is obtained from this reaction. Mass spectral
analysis indicated that both4aand4bwere formed, which was
confirmed by X-ray crystallographic analysis.11,12

The molecular structure of4a and 4b (Figure 2) confirms
the replacement of the skeletal boron atom by antimony(V).
Both compounds cocrystallize, and there is occupational disorder
of the atom labeled Clf (fractional occupancy Cl:F) 85:15).
This structure is similar to that of3, where the ring also adopts
a boat conformation. It is noteworthy that both3 and4 represent
rare examples of heterophosphazenes containing high oxidation
state group 15 elements beyond the first row.20

In summary, we report the unexpected skeletal substitution
of boron in a normally highly robust borazine-like environment.
Further work is underway aimed at studying the mechanism
and exploring the generality of this new class of reaction.
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Figure 1. Crystal structure of3. Selected bond lengths [Å] and angles
[deg]: P(1)-N(1) 1.555(4), P(2)-N(1) 1.562(4), P(1)-N(2) 1.589-
(4), P(2)-N(3) 1.595(4), N(2)-As 1.907(3), N(3)-As 1.903(4); P(1)-
N(1)-P(2) 124.8(2), N(1)-P(1)-N(2) 114.5(2), N(1)-P(2)-N(3)
114.6 (2), P(1)-N(2)-As 121.3(2), P(2)-N(3)-As 121.5(2), N(2)-
As-N(3) 93.3(2).

Figure 2. Crystal structure of4. Selected bond lengths [Å] and angles
[deg]: P(1)-N(1) 1.562(6), P(2)-N(1) 1.557(6), P(1)-N(2) 1.581-
(6), P(2)-N(3) 1.588(6), N(2)-Sb 2.064(6), N(3)-Sb 2.081(5); P(1)-
N(1)-P(2) 128.1(4), N(1)-P(1)-N(2) 113.8(3), N(1)-P(2)-N(3)
114.0 (3), P(1)-N(2)-Sb 122.1(3), P(2)-N(3)-Sb 120.4(3), N(2)-
Sb-N(3) 92.2(2).
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